10 Credits AUTUMN


Pre-requisites: A-level Physics and Mathematics or equivalent.

PHY304

PHY104 recommended


Aims/Description: The LHC accelerates protons to kinetic energies of up to 7000 times their rest mass - a huge technological achievement. Yet, every second, over 500 million particles with energies greater than this collide with the Earth. Where do these particles come from, and how are they accelerated to these astonishing energies? These are, in fact, still open questions in astrophysics. In this module, we will look at the observational evidence for particle acceleration in astrophysical objects, the mechanisms available to accelerate particles, and some of the likely sources, including supernovae and supernova remnants, neutron stars, and active galaxies

Staff Contact: CARTWRIGHT SUSAN L
Teaching Methods: Tutorials, Independent Study,
Assessment: Formal Exam, Classroom testing

Information on the department responsible for this unit (Physics and Astronomy):

Departmental Home Page
Teaching timetable

|

NOTE
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.

URLs used in these pages are subject to year-on-year change. For this reason we recommend that you do not bookmark these pages or set them as favourites.

Teaching methods and assessment displayed on this page are indicative for 2021-22. Students will be informed by the academic department of any changes made necessary by the ongoing pandemic.

Western Bank, Sheffield, S10 2TN, UK