15 Credits GRADUATE YEAR



Aims/Description: Fundamental to the design and safety of a nuclear reactor is the ability to remove energy safely from the core. This module therefore aims to describe the thermal hydraulic processes involved in the transfer of power from the core to the secondary systems of nuclear power plants. The principles of single phase and multiphase fluid dynamics and heat transfer will be studied and applied in the context of a range of different reactor types. The techniques developed will allow you to make assessments of various reactors against thermal limiting criteria. On completion, students should have obtained: An understanding of the heat transfer mechanisms in reactor systems An understanding of fluid flow mechanisms in reactor systems An appreciation of the limits on safe power removal from reactor cores An appreciation of computer codes used to assess limiting power An understanding of the influence of power conversion methods on reactor design. The ability to perform basic calculations of thermal hydraulic quantities in core channels.

Staff Contact: STENNETT MARTIN C
Assessment: Course work

Information on the department responsible for this unit (Null department):

Teaching timetable

|

NOTE
The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.

URLs used in these pages are subject to year-on-year change. For this reason we recommend that you do not bookmark these pages or set them as favourites.

Teaching methods and assessment displayed on this page are indicative for 2021-22. Students will be informed by the academic department of any changes made necessary by the ongoing pandemic.

Western Bank, Sheffield, S10 2TN, UK