Aims/Description: This module brings together the underlying physical principles of BJT, JFET and MOSFET devices to show how structural decisions in device design affect performance as a circuit element. Basic circuit topologies such as long - tailed pairs, Darlington transistors and current mirrors are described as a precursor to exploring the internal design of a typical op-amp. Common applications of op-amps are discussed. The relationship between device structure and performance in simple CMOS circuits is explored and applied to real digital circuit applications. Digital system design strategies are introduced with examples drawn from everyday embedded digital systems.

Staff Contact: SEED NICHOLAS L
Teaching Methods: Lectures, Problem solving, Laboratory work, Independent Study
Assessment: Formal Exam, Practical skills assessment

Information on the department responsible for this unit (Electronic and Electrical Engineering):

Departmental Home Page
Teaching timetable


The content of our courses is reviewed annually to make sure it's up-to-date and relevant. Individual modules are occasionally updated or withdrawn. This is in response to discoveries through our world-leading research; funding changes; professional accreditation requirements; student or employer feedback; outcomes of reviews; and variations in staff or student numbers. In the event of any change we'll consult and inform students in good time and take reasonable steps to minimise disruption.

URLs used in these pages are subject to year-on-year change. For this reason we recommend that you do not bookmark these pages or set them as favourites.

Teaching methods and assessment displayed on this page are indicative for 2021-22. Students will be informed by the academic department of any changes made necessary by the ongoing pandemic.

Western Bank, Sheffield, S10 2TN, UK